Question

How can something have a negative mass, and what does that mean?

Asked by: Jim Larkin

Answer

If a particle could have a negative mass it certainly would be hard to understand. That is why physicists define mass to be always positive. So by definition there is no such thing as 'negative' mass. This is not an arbitrary definition as there are very deep reasons as to why a negative mass could never be physical.

Sometimes, in employing mathematical models to describe Nature, we come across solutions to equations that may allow for negative masses. For example, the formula for the energy of a relativistic particle is

E2 = m2*c4 + p2*c2.

So a particle with a certain positive energy but no momentum could presumably have a positive or negative mass. Dirac interpreted these negative mass states as anti-particles that he hid away in the 'Dirac Sea.' While this anachronistic interpretation still lives on in old-textbooks and new-Age books on quantum mechanics, we now know that this picture is wrong. Anti-particles have positive masses just as any other particle (see http://www.physlink.com/ae247.cfm). These 'negative' solutions are simply not physical and are dropped. Not everything that has mathematical meaning has physical meaning!

Another place where people like to talk about negative masses is in reference to 'tachyons.' The tachyon (whose name comes from the Greek word tachys for swift) was originally any solution to Special Relativity that had a velocity greater than the speed of light. Such a state (like Dirac's 'negative energy' states) are non-physical. These particles would have imaginary masses (that is the mass-squared is negative) and this is just as unphysical as a negative mass or a negative energy. Thus such solutions are always discarded or removed from any theory that claims to describe Nature.

Answered by: Brent Nelson, M.A. Physics, Ph.D. Student, UC Berkeley

Search

Loading






Science Quote

'The strength and weakness of physicists is that we believe in what we can measure. And if we can't measure it, then we say it probably doesn't exist. And that closes us off to an enormous amount of phenomena that we may not be able to measure because they only happened once. For example, the Big Bang. ... That's one reason why they scoffed at higher dimensions for so many years. Now we realize that there's no alternative... '

Michio Kaku
(1947-)