Gifts Sale - for science moms, dads & grads
Gifts Sale - for science moms, dads & grads

Physics & Astronomy News

<p>This image, taken by NASA's Hubble Space Telescope, reveals an unusual sight: a runaway quasar fleeing from its galaxy's central hub. A quasar is the visible, energetic signature of a black hole. Black holes cannot be observed directly, but they are the energy source at the heart of quasars — intense, compact gushers of radiation that can outshine an entire galaxy.</p>

<p>The green dotted line marks the visible periphery of the galaxy. The quasar, named 3C 186, appears as a bright star just off-center. The quasar and its host galaxy reside 8 billion light-years from Earth. Researchers estimate that it took the equivalent energy of 100 million supernovas exploding simultaneously to jettison the black hole. The most plausible explanation for this propulsive energy is that the monster object was given a kick by gravitational waves unleashed by the merger of two hefty black holes at the center of the host galaxy.</p>

<p>The Hubble image combines visible and near-infrared light taken by the Wide Field Camera 3.</p>

<p>Courtesy: NASA</p>
Gravitational Wave Kicks Monster Black Hole Out of Galactic Core
Astronomers have uncovered a supermassive black hole that has been propelled out of the center of a distant galaxy by what could be the awesome power of gravitational waves.
<p>Composite ALMA and optical image of a young Milky Way-like galaxy 12 billion light-years away and a background quasar 12.5 billion light-years away. Light from the quasar passed through the galaxy's gas on its way to Earth, revealing the presence of the galaxy to astronomers. New ALMA observations of the galaxy's ionized carbon (green) and dust continuum (blue) emission show that the dusty, star-forming disk of the galaxy is vastly offset from the gas detected by quasar absorption at optical wavelengths (red). This indicates that a massive halo of gas surrounds the galaxy. The optical data are from the Keck I Telescope at the W.M. Keck Observatory. Credit: ALMA (ESO/NAOJ/NRAO), M. Neeleman & J. Xavier Prochaska; Keck Observatory</p>
Milky Way-like Galaxies in Early Universe Embedded in 'Super Halos'
By harnessing the extreme sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have directly observed a pair of Milky Way-like galaxies seen when the universe was only eight percent of its current age.

<p>NEOS Detector</p>

<p>Courtesy: ibs</p>
Finding the 'Ghost Particles' Might be More Challenging
Results from the NEOS experiment on sterile neutrinos differ partly from the theoretical expectations.
<p>Lithospheric magnetic field</p>

<p>Courtesy: ESA</p>
Earth’s Magnetic Field Reveals Details Of A Dramatic Past
ESA’s Swarm satellites are seeing fine details in one of the most difficult layers of Earth’s magnetic field to unpick – as well as our planet’s magnetic history imprinted on Earth’s crust.

Scientists Evade The Heisenberg Uncertainty Principle
The study, published in Nature, reports a technique to bypass the Heisenberg uncertainty principle.
Using Light to Control Curvature of Plastics
Researchers have developed a technique that uses light to get two-dimensional (2-D) plastic sheets to curve into three-dimensional (3-D) structures, such as spheres, tubes or bowls.
The Cat’s Paw and Lobster Nebulae
The beautiful, glowing, cosmic clouds of gas and dust catalogued as NGC 6334 and NGC 6357 now have new names.

Science Facts

The Color of The Sunset

by NOAA National Oceanic & Atmospheric Administration and

Sunset over west Maui: Image Copyright © 2002 Color in the form of pigment does not exist in the atmosphere. Instead, the color we see in the sky results from the scattering, refraction, and diffraction of sunlight by particles in the atmosphere, especially small particles such as air molecules. If there were no particles in the atmosphere, then sunlight would travel straight down to the Earth and the sky would be black.

Specifically, sunlight travels thought the solar system in straight, invisible waves (unless something sends it off in a different direction) and consists of a mixture of all colors in the visible portion of the electromagnetic spectrum. Furthermore, each color in this spectrum is associated with a different wavelength: red and orange have the longest wavelengths--while blue, indigo, and violet have the shortest (i.e., 0.47 um for violet to 0.64 um for red). Thus, when sunlight first enters the Earth's atmosphere, air molecules are typically the first to scatter the colors in sunlight--one by one, beginning at the violet end of the spectrum.

Specifically, when the sun is high in the sky (and there is a relatively short pathway to the Earth), violet, indigo, blue, and a little green are scattered, producing a blue sky. However, when the sun is low in the sky (i.e., sunrise or sunset), its path through the atmosphere is longer and yellow, orange, and red colors are scattered near the ground. Thus, as a general rule, the farther light travels through the atmosphere, the redder it becomes. The longer trip means more and more light at the blue end of the spectrum is scattered. This leaves red, yellow, and orange light to reach our eyes or reflect off clouds. This notion is perhaps best illustrated by example: a beam of sunlight that at a given moment produces a red sunset over the Appalachians is at the same time contributing to the deep blue of a late afternoon sky over the Rockies.

Series of images over time of the light echo from the star known as V838 Monocerotis or V 838 Mon.
Light Fantastic

On the next hot summer day, imagine what would happen if the Sun suddenly became one million times brighter. Ice cream would quickly melt, sunscreen lotion wouldn't work very well, and that's just the ...
continue reading this fact
Hurricane Elena
The Coriolis Effect

The Earth, rotating at about 1000 miles per hour (1,609 km/hr), influences the flow of air and water on its surface. We call this the Coriolis Effect, named after French scientist Gaspard Coriolis, wh ...
continue reading this fact

A Giant X-Ray Machine

The first clear detection of X-rays from the giant, gaseous planet Saturn has been made with NASA's Chandra X-ray Observatory. Chandra's image shows that the X-rays are concentrated near Saturn's equa ...
continue reading this fact

Get $10 OFF glasses at

Science Quote

'To myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.'

Isaac Newton

All rights reserved. © Copyright '1995-'2017