PhysLink.com Logo
15th Anniversary Sale
15th Anniversary Sale

Physics & Astronomy News


<p>How Gravity Can Bend Starlight</p>

<p>This illustration reveals how the gravity of a white dwarf star warps space and bends the light of a distant star behind it.</p>

<p>White dwarfs are the burned-out remnants of normal stars. The Hubble Space Telescope captured images of the dead star, called Stein 2051 B, as it passed in front of a background star. During the close alignment, Stein 2051 B deflected the starlight, which appeared offset by about 2 milliarcseconds from its actual position. This deviation is so small that it is equivalent to observing an ant crawl across the surface of a quarter from 1,500 miles away. From this measurement, astronomers calculated that the white dwarf's mass is roughly 68 percent of the sun's mass.</p>

<p>Stein 2051 B resides 17 light-years from Earth. The background star is about 5,000 light-years away. The white dwarf is named for its discoverer, Dutch Roman Catholic priest and astronomer Johan Stein.</p>
Observation confirms Einsteins general theory of relativity.
Astronomers have used NASA Hubble Space Telescope to repeat a century-old test of Einsteins general theory of relativity
<p>This image, taken by NASA's Hubble Space Telescope, reveals an unusual sight: a runaway quasar fleeing from its galaxy's central hub. A quasar is the visible, energetic signature of a black hole. Black holes cannot be observed directly, but they are the energy source at the heart of quasars — intense, compact gushers of radiation that can outshine an entire galaxy.</p>

<p>The green dotted line marks the visible periphery of the galaxy. The quasar, named 3C 186, appears as a bright star just off-center. The quasar and its host galaxy reside 8 billion light-years from Earth. Researchers estimate that it took the equivalent energy of 100 million supernovas exploding simultaneously to jettison the black hole. The most plausible explanation for this propulsive energy is that the monster object was given a kick by gravitational waves unleashed by the merger of two hefty black holes at the center of the host galaxy.</p>

<p>The Hubble image combines visible and near-infrared light taken by the Wide Field Camera 3.</p>

<p>Courtesy: NASA</p>
Gravitational Wave Kicks Monster Black Hole Out of Galactic Core
Astronomers have uncovered a supermassive black hole that has been propelled out of the center of a distant galaxy by what could be the awesome power of gravitational waves.

<p>Composite ALMA and optical image of a young Milky Way-like galaxy 12 billion light-years away and a background quasar 12.5 billion light-years away. Light from the quasar passed through the galaxy's gas on its way to Earth, revealing the presence of the galaxy to astronomers. New ALMA observations of the galaxy's ionized carbon (green) and dust continuum (blue) emission show that the dusty, star-forming disk of the galaxy is vastly offset from the gas detected by quasar absorption at optical wavelengths (red). This indicates that a massive halo of gas surrounds the galaxy. The optical data are from the Keck I Telescope at the W.M. Keck Observatory. Credit: ALMA (ESO/NAOJ/NRAO), M. Neeleman & J. Xavier Prochaska; Keck Observatory</p>
Milky Way-like Galaxies in Early Universe Embedded in 'Super Halos'
By harnessing the extreme sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have directly observed a pair of Milky Way-like galaxies seen when the universe was only eight percent of its current age.
<p>NEOS Detector</p>

<p>Courtesy: ibs</p>
Finding the 'Ghost Particles' Might be More Challenging
Results from the NEOS experiment on sterile neutrinos differ partly from the theoretical expectations.


Earth’s Magnetic Field Reveals Details Of A Dramatic Past
ESA’s Swarm satellites are seeing fine details in one of the most difficult layers of Earth’s magnetic field to unpick – as well as our planet’s magnetic history imprinted on Earth’s crust.
Scientists Evade The Heisenberg Uncertainty Principle
The study, published in Nature, reports a technique to bypass the Heisenberg uncertainty principle.
Using Light to Control Curvature of Plastics
Researchers have developed a technique that uses light to get two-dimensional (2-D) plastic sheets to curve into three-dimensional (3-D) structures, such as spheres, tubes or bowls.

Science Facts

The Wilkinson Microwave Anisotropy Probe (WMAP)

by NASA Goddard Space Flight Center and ScienceIQ.com

WMAP: Image Courtesy GSFC The cosmic microwave background (CMB) radiation is the radiant heat left over from the Big Bang. It was first observed in 1965 by Arno Penzias and Robert Wilson at the Bell Telephone Laboratories in Murray Hill, New Jersey. The properties of the radiation contain a wealth of information about physical conditions in the early universe and a great deal of effort has gone into measuring those properties since its discovery. This radiation (and by extension, the early universe) is remarkably featureless; it has virtually the same temperature in all directions in the sky.

In 1992, NASA's Cosmic Background Explorer (COBE) satellite detected tiny fluctuations, or anisotropy, in the cosmic microwave background. It found, for example, one part of the sky has a temperature of 2.7251 Kelvin (degrees above absolute zero), while another part of the sky has a temperature of 2.7249 Kelvin. These fluctuations are related to fluctuations in the density of matter in the early universe and thus carry information about the initial conditions for the formation of cosmic structures such as galaxies, clusters, and voids. COBE had an angular resolution of 7 degrees across the sky, 14 times larger than the Moon's apparent size. This made COBE sensitive only to broad fluctuations of large size.

The Wilkinson Microwave Anisotropy Probe (WMAP) was launched in June of 2001 and has made a map of the temperature fluctuations of the CMB radiation with much higher resolution, sensitivity, and accuracy than COBE. The new information contained in these finer fluctuations sheds light on several key questions in cosmology. By answering many of the current open questions, it will likely point astrophysicists towards newer and deeper questions about the nature of our universe.


On the first day of the Mapping Phase of the Mars Global Surveyor mission, MOC was greeted with this view of
Two Face? Absolutely!

During the Viking missions to Mars in the mid 1970s, the planet was imaged from orbit by the Viking 1 and 2 Orbiters. These spacecraft returned images of regions of the planet that, while similar to g ...
continue reading this fact
A solar flare with an eruptive prominence on the limb of the sun.
Is There Weather In Space?

Space weather occurs in the area between the Earth and the Sun and refers to the disturbances and storms that swirl through space, which could have adverse effects on human activities. These disturban ...
continue reading this fact
Launched on June 30, 2001, WMAP maintains a distant orbit about the second Lagrange Point, or
The Oldest Light in the Universe

A NASA satellite has captured the sharpest-ever picture of the afterglow of the big bang. The image contains such stunning detail that it may be one of the most important scientific results of recent ...
continue reading this fact


Science Quote

'My scientific work is motivated by an irresistible longing to understand the secrets of nature and by no other feelings.'

Albert Einstein
(1879-1955)


All rights reserved. © Copyright '1995-'2017 PhysLink.com