PhysLink.com Logo
Christmas in July SALE
Christmas in July SALE

Physics & Astronomy News


<p>How Gravity Can Bend Starlight</p>

<p>This illustration reveals how the gravity of a white dwarf star warps space and bends the light of a distant star behind it.</p>

<p>White dwarfs are the burned-out remnants of normal stars. The Hubble Space Telescope captured images of the dead star, called Stein 2051 B, as it passed in front of a background star. During the close alignment, Stein 2051 B deflected the starlight, which appeared offset by about 2 milliarcseconds from its actual position. This deviation is so small that it is equivalent to observing an ant crawl across the surface of a quarter from 1,500 miles away. From this measurement, astronomers calculated that the white dwarf's mass is roughly 68 percent of the sun's mass.</p>

<p>Stein 2051 B resides 17 light-years from Earth. The background star is about 5,000 light-years away. The white dwarf is named for its discoverer, Dutch Roman Catholic priest and astronomer Johan Stein.</p>
Observation confirms Einsteins general theory of relativity.
Astronomers have used NASA Hubble Space Telescope to repeat a century-old test of Einsteins general theory of relativity
<p>This image, taken by NASA's Hubble Space Telescope, reveals an unusual sight: a runaway quasar fleeing from its galaxy's central hub. A quasar is the visible, energetic signature of a black hole. Black holes cannot be observed directly, but they are the energy source at the heart of quasars — intense, compact gushers of radiation that can outshine an entire galaxy.</p>

<p>The green dotted line marks the visible periphery of the galaxy. The quasar, named 3C 186, appears as a bright star just off-center. The quasar and its host galaxy reside 8 billion light-years from Earth. Researchers estimate that it took the equivalent energy of 100 million supernovas exploding simultaneously to jettison the black hole. The most plausible explanation for this propulsive energy is that the monster object was given a kick by gravitational waves unleashed by the merger of two hefty black holes at the center of the host galaxy.</p>

<p>The Hubble image combines visible and near-infrared light taken by the Wide Field Camera 3.</p>

<p>Courtesy: NASA</p>
Gravitational Wave Kicks Monster Black Hole Out of Galactic Core
Astronomers have uncovered a supermassive black hole that has been propelled out of the center of a distant galaxy by what could be the awesome power of gravitational waves.

<p>Composite ALMA and optical image of a young Milky Way-like galaxy 12 billion light-years away and a background quasar 12.5 billion light-years away. Light from the quasar passed through the galaxy's gas on its way to Earth, revealing the presence of the galaxy to astronomers. New ALMA observations of the galaxy's ionized carbon (green) and dust continuum (blue) emission show that the dusty, star-forming disk of the galaxy is vastly offset from the gas detected by quasar absorption at optical wavelengths (red). This indicates that a massive halo of gas surrounds the galaxy. The optical data are from the Keck I Telescope at the W.M. Keck Observatory. Credit: ALMA (ESO/NAOJ/NRAO), M. Neeleman & J. Xavier Prochaska; Keck Observatory</p>
Milky Way-like Galaxies in Early Universe Embedded in 'Super Halos'
By harnessing the extreme sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have directly observed a pair of Milky Way-like galaxies seen when the universe was only eight percent of its current age.
<p>NEOS Detector</p>

<p>Courtesy: ibs</p>
Finding the 'Ghost Particles' Might be More Challenging
Results from the NEOS experiment on sterile neutrinos differ partly from the theoretical expectations.


Earth’s Magnetic Field Reveals Details Of A Dramatic Past
ESA’s Swarm satellites are seeing fine details in one of the most difficult layers of Earth’s magnetic field to unpick – as well as our planet’s magnetic history imprinted on Earth’s crust.
Scientists Evade The Heisenberg Uncertainty Principle
The study, published in Nature, reports a technique to bypass the Heisenberg uncertainty principle.
Using Light to Control Curvature of Plastics
Researchers have developed a technique that uses light to get two-dimensional (2-D) plastic sheets to curve into three-dimensional (3-D) structures, such as spheres, tubes or bowls.

Science Facts

Binary and Multiple Star Systems

by Chandra X-Ray Observatory Center and ScienceIQ.com

An X-ray image of the Sirius star system located 8.6 light years from Earth.: Image Courtesy  NASA/SAO/CXC Stars, like people, are seldom found in isolation. More than 80% of all stars are members of multiple star systems containing two or more stars. Exactly how these systems are formed is not well understood. Some are thought to form when a collapsing cloud of gas breaks apart into two or more clouds which then become stars, or when one star captures another as a result of a grazing collision, or by a close encounter with two or more other stars. The most common multiple star systems are those with two stars. These so-called binary stars have played an important role in many areas of astronomy, especially X-ray astronomy.

In many binary systems the stars orbit their common center of mass under the influence of their mutual gravitational force, but they evolve independently. These are called wide binaries, and are analogous to friends that are far apart and stay in touch with an occasional telephone call or e-mail on holidays. The hot upper atmospheres, or coronas, of these stars can produce X-rays, but not nearly so spectacularly as the X-ray binaries discussed below and elsewhere. Wide binaries are nevertheless important because they provide the best means for measuring the masses of stars by observing the size and period of the orbit and then applying the theory of gravity.

In some binary systems, called close binaries, the stars are so close together that they can transfer matter to each other and change the way the stars look and evolve. They are like very close friends or family members who strongly affect each other's lives.


An artist
The Brave and Cold Ulysses

Deep space is cold. Very cold. That's a problem--especially if you're flying in an old spaceship. And your power supplies are waning. And the fuel lines could freeze at any moment. Oh, and by the way, ...
continue reading this fact
Constellation Sagittarius.
Introduction to Constellations

'Constellation' is the name we give to seeming patterns of starsin the night sky. 'Stella' is the Latin word for star and a constellation is a grouping of stars. In general, the stars in these groups ...
continue reading this fact
This original 1930 cloud-chamber photograph by Carl Anderson shows the track of a positively charged particle (thin track curving to the left) of electronic mass slowed down by passing upward through a lead plate (horizontal thick line).
Antimatter Discovery

In almost every science fiction movie ever made, you are bound to hear about antimatter –– matter-antimatter propulsion drives, whole galaxies made of antimatter, and so on. Antimatter has been used ...
continue reading this fact




Get $10 OFF glasses at EyeBuyDirect.com

Science Quote

'I have no special talents. I am only passionately curious.'

Albert Einstein
(1879-1955)


All rights reserved. © Copyright '1995-'2017 PhysLink.com