How do evaporative coolers work?

Asked by: Tommy


That's an good question, and the answer lies in a concept called latent heating.

Let's start with nice familiar example. As we all know, water exists in three phases (as all molecules do). A water molecule has a really high amount of energy as a gas particle (or water vapor) because it's moving at high speeds (i.e. high kinetic energy) in all sorts of random directions. When that same particle is in liquid form, it's confined within the particles surrounding it, and it's not moving nearly as fast as it was as a gas particle. Therefore, it has LESS energy as a liquid particle than it did as a gas particle.

According to the law of conservation of energy, energy cannot be created nor destroyed. So where'd did the particles energy go when it changed from a gas phase to a liquid phase?

The energy went to the particles around it through latent heat exchange. The particle went from a high energy gas state to a low energy liquid state, and had to give up some of that energy to it's surroundings causing the other particles to gain energy and 'heat up'.

The same thing goes when a liquid particle goes to a gas particle. It's going from a low energy liquid state to a high energy gas state. The increase in energy has to come from somewhere, and that place is from the surrounding particles. The molecule sucks energy from surrounding molecules when it goes from a liquid to a gas causing the surrounding particles to lose energy and 'cool off'.

The change from a liquid state to a gas state is evaporation. Evaporative coolers simply use the evaporation of a liquid to suck energy from whatever you put in them, and therefore keep things cool!!!

Now, you still might be wondering how evaporative coolers can have evaporation at the low temperatures you need in a 'cooler'. Well, as you decrease the air pressure above a liquid, there's less force pushing down on the surface of the liquid, and surface particles can exit the surface of the liquid and become gas particles much more easily. Therefore, by creating a REALLY LOW pressure above a liquid, that liquid will evaporate at much LOWER temperatures. Then those particles in turn suck heat out of the system in order to be at a gaseous state of higher energy.

Answered by: Matthew Norman, Undergrad Student, NCSU, Raleigh, North Carolina

Evaporative coolers work by the evaporation of the cooling medium (usually water). Water is a very effective coolant medium because it has a large heat of vaporization -- about 10 Kcal/mol. or about 42 KJ/mol. When you consider that 1 mol of water is only 18 gm, or 18 cm3 that is a lot of energy absorbed on a mass basis.

However, evaporative coolers also require that the surrounding air have a low relative humidity (R.H.) because the rate of evaporation is roughly inversely proportional to the relative humidity. At 100% R.H. no water would evaporate and the efficiency of the cooler would be essentially zero.

Answered by: Vince Calder, Ph.D., Physical Chemist, Retired



Science Quote

'An expert is someone who knows some of the worst mistakes that can be made in his subject and how to avoid them.'

Werner Heisenberg
Science Sidebar | Science Education Articles
Cool Summer Science Projects

Why not make science a part of your family’s summer? Perhaps you can set aside one day a week for outdoor projects—maybe Mad Scientist Monday or Scientific Saturday? Here are a few ideas to help get you started. Continue reading ...

10 Ways to Keep Your Kids Interested In Science

Young children are natural scientists: they ask questions, pick up sticks and bugs outside, and are curious about the world around them. But as they get a bit older, many kids gradually lose their interest in science. They might see it as just another task at school, something that doesn't apply to their lives. Of course nothing could be further from the truth, so here are ten ways you can remind your kids that science is everywhere. Most of these are fun for adults, too! Continue reading ...

Top Selling

Here are our physics & astronomy bestsellers:
Magnetic Levitator - Classic
3D Magnetic Field Tube
Revolving Multi-Color Fiberoptic Light
KonusScience 5 Way Microscope Kit
Tin Can Robot 4M Kit
Solar Radiometer
Wood Grain Newtons Cradle
12 inch Galileo Thermometer
21 inch Galileo Thermometer


USC University of Southern California Dornsife College Physics and Astronomy Department McMaster University Physics and Astronomy Department