Shortening a guitar string to one-third its initial length will change its natural frequency by what factor?

Asked by: elva b.


A guitar string, when stretched within its elastic limits, obeys the wave equation. A little analysis of the motion of elastic strings gives the equation:

v = sqrt(T/m)

Here, v is the speed of waves traveling on the string, T is the tension in the string, and m is the linear mass density (mass per unit length) of the string.

What we call the "natural frequency" in here is actually the lowest natural frequency of the string. Given f is the lowest natural frequency of the string, 2f, 3f, 4f, etc. are also natural resonant frequencies of the string, and these are called the "harmonics". This happens because a string has an infinite number of degrees of freedom.

The natural frequency of a string can be found by looking for a sinusoidal solution where the nodes coincide with the fixed ends of the string. This yields the equation:

f = sqrt(T/m) / 2L

Here, T and m are as before, and L is the length of the string. and f is the frequency of the vibration in Hertz (that is what you hear!).

So, we see that the natural frequency depends on three factors: How much tension you apply, whether or not they are Coated guitar strings, how "thick" and how long they are. It seems the original question is incomplete; we can easily assume the same linear mass density, but how about the tension? If we assume the tension is unchanged as well (thus making the question well-defined), the answer is now straightforward. Since length and frequency are clearly inversely proportional, if the length is shortened to one-third its initial length, the frequency will increase to three times its initial value.

Answered by: Yasar Safkan, Ph.D., Instructor, Yeditepe University, Istanbul, TURKEY



Science Quote

'Beauty is a harmonious relation between something in our nature and the quality of the object which delights us.'

Blaise Pascal
Science Sidebar | Science Education Articles
Cool Summer Science Projects

Why not make science a part of your family’s summer? Perhaps you can set aside one day a week for outdoor projects—maybe Mad Scientist Monday or Scientific Saturday? Here are a few ideas to help get you started. Continue reading ...

10 Ways to Keep Your Kids Interested In Science

Young children are natural scientists: they ask questions, pick up sticks and bugs outside, and are curious about the world around them. But as they get a bit older, many kids gradually lose their interest in science. They might see it as just another task at school, something that doesn't apply to their lives. Of course nothing could be further from the truth, so here are ten ways you can remind your kids that science is everywhere. Most of these are fun for adults, too! Continue reading ...

Top Selling

Here are our physics & astronomy bestsellers:
Magnetic Levitator - Classic
3D Magnetic Field Tube
KonusScience 5 Way Microscope Kit
Revolving Multi-Color Fiberoptic Light
Tin Can Robot 4M Kit
Potato Clock 4M Kit
Mini Plasma Ball
Clean Water Science 4M Kit
Solar Radiometer


USC University of Southern California Dornsife College Physics and Astronomy Department McMaster University Physics and Astronomy Department