PhysLink.com Logo
Final Clearance - save up to 75% OFF
Final Clearance - save up to 75% OFF

Physics & Astronomy News


<p>This image, taken by NASA's Hubble Space Telescope, reveals an unusual sight: a runaway quasar fleeing from its galaxy's central hub. A quasar is the visible, energetic signature of a black hole. Black holes cannot be observed directly, but they are the energy source at the heart of quasars — intense, compact gushers of radiation that can outshine an entire galaxy.</p>

<p>The green dotted line marks the visible periphery of the galaxy. The quasar, named 3C 186, appears as a bright star just off-center. The quasar and its host galaxy reside 8 billion light-years from Earth. Researchers estimate that it took the equivalent energy of 100 million supernovas exploding simultaneously to jettison the black hole. The most plausible explanation for this propulsive energy is that the monster object was given a kick by gravitational waves unleashed by the merger of two hefty black holes at the center of the host galaxy.</p>

<p>The Hubble image combines visible and near-infrared light taken by the Wide Field Camera 3.</p>

<p>Courtesy: NASA</p>
Gravitational Wave Kicks Monster Black Hole Out of Galactic Core
Astronomers have uncovered a supermassive black hole that has been propelled out of the center of a distant galaxy by what could be the awesome power of gravitational waves.
<p>Composite ALMA and optical image of a young Milky Way-like galaxy 12 billion light-years away and a background quasar 12.5 billion light-years away. Light from the quasar passed through the galaxy's gas on its way to Earth, revealing the presence of the galaxy to astronomers. New ALMA observations of the galaxy's ionized carbon (green) and dust continuum (blue) emission show that the dusty, star-forming disk of the galaxy is vastly offset from the gas detected by quasar absorption at optical wavelengths (red). This indicates that a massive halo of gas surrounds the galaxy. The optical data are from the Keck I Telescope at the W.M. Keck Observatory. Credit: ALMA (ESO/NAOJ/NRAO), M. Neeleman & J. Xavier Prochaska; Keck Observatory</p>
Milky Way-like Galaxies in Early Universe Embedded in 'Super Halos'
By harnessing the extreme sensitivity of the Atacama Large Millimeter/submillimeter Array (ALMA), astronomers have directly observed a pair of Milky Way-like galaxies seen when the universe was only eight percent of its current age.

<p>NEOS Detector</p>

<p>Courtesy: ibs</p>
Finding the 'Ghost Particles' Might be More Challenging
Results from the NEOS experiment on sterile neutrinos differ partly from the theoretical expectations.
<p>Lithospheric magnetic field</p>

<p>Courtesy: ESA</p>
Earth’s Magnetic Field Reveals Details Of A Dramatic Past
ESA’s Swarm satellites are seeing fine details in one of the most difficult layers of Earth’s magnetic field to unpick – as well as our planet’s magnetic history imprinted on Earth’s crust.


Scientists Evade The Heisenberg Uncertainty Principle
The study, published in Nature, reports a technique to bypass the Heisenberg uncertainty principle.
Using Light to Control Curvature of Plastics
Researchers have developed a technique that uses light to get two-dimensional (2-D) plastic sheets to curve into three-dimensional (3-D) structures, such as spheres, tubes or bowls.
The Cat’s Paw and Lobster Nebulae
The beautiful, glowing, cosmic clouds of gas and dust catalogued as NGC 6334 and NGC 6357 now have new names.

Science Facts

Bizarre Boiling

by NASA Marshall Space Flight Center and ScienceIQ.com

Without buoyancy, the vapor produced by boiling simply floats as a bubble inside the liquid after the heating has stopped. Surface tension effects cause the many small bubbles produced to coalesce into one large sphere.: Image Courtesy NASA The next time you're watching a pot of water boil, perhaps for coffee or a cup of soup, pause for a moment and consider: what would this look like in space? Would the turbulent bubbles rise or fall? And how big would they be? Would the liquid stay in the pan at all? Until a few years ago, nobody knew. Indeed, physicists have trouble understanding the complex behavior of boiling fluids here on Earth. Perhaps boiling in space would prove even more baffling.... It's an important question because boiling happens not only in coffee pots, but also in power plants and spacecraft cooling systems. Engineers need to know how boiling works.

In the early 1990's a team of scientists and engineers from the University of Michigan and NASA decided to find out. Using a freon coolant as their liquid, they conducted a series of boiling experiments on the space shuttle during 5 missions between 1992 to 1996. And indeed, they found some intriguing differences between what happens to boiling fluids on Earth and what happens to them in orbit. For example, a liquid boiling in weightlessness produces -- not thousands of effervescing bubbles -- but one giant undulating bubble that swallows up smaller ones!

Despite its entertainment value, this research is much more than a simple curiosity. Learning how liquids boil in space will lead to more efficient cooling systems for spacecraft, such as the ammonia-based system on the International Space Station. Knowledge of boiling in space might also be used someday to design power plants for space stations that use sunlight to boil a liquid to create vapor, which would then turn a turbine to produce electricity.


The artist
White Dwarfs

White dwarfs are among the dimmest stars in the universe. Even so, they have commanded the attention of astronomers ever since the first white dwarf was observed by optical telescopes in the middle of ...
continue reading this fact
Astronaut in free fall
Can You Miss the Earth?

Have you ever wondered why astronauts float in space? Well, it isn't because there is no gravity in space. Astronauts float because they are in constant free fall. If a baseball pitcher throws a ba ...
continue reading this fact

Aerosol Sprays

Liquid forced through a small orifice under pressure will come out Is a spray of fine droplets, or mist, rather than as a stream, or jet. A 'squirt gun' works the same way, as does the kitchen faucet ...
continue reading this fact


Get $10 OFF glasses at EyeBuyDirect.com

Science Quote

'The greatest good will come from the technical improvements tending to unification and harmony.'

Nikola Tesla
(1856-1943)


All rights reserved. © Copyright '1995-'2017 PhysLink.com