Click here for a printer-friendly version of this page.

NASA's Spitzer Unearths Primitive Black Holes

Posted on: Thursday April 1, 2010.

This artist's conception illustrates one of the most primitive supermassive black holes known (central black dot) at the core of a young, star-rich galaxy. Astronomers using NASA's Spitzer Space Telescope have uncovered two of these early objects, dating back to about 13 billion years ago.

The monstrous black holes are among the most distant known, and appear to be in the very earliest stages of formation, earlier than any observed so far. Unlike all other supermassive black holes probed to date, this primitive duo, called J0005-0006 and J0303-0019, lacks dust.

As the drawing shows, gas swirls around a black hole in what is called an accretion disk. Usually, the accretion disk is surrounded by a dark doughnut-like dusty structure called a dust torus. But for the primitive black holes, the dust tori are missing and only gas disks are observed. This is because the early universe was clean as a whistle. Enough time had not passed for molecules to clump together into dust particles. Some black holes forming in this era thus started out lacking dust. As they grew, gobbling up more and more mass, they are thought to have accumulated dusty rings.

This illustration also shows how supermassive black holes can distort space and light around them (see warped stars behind black hole). Stars from the galaxy can be seen sprinkled throughout, and distant mergers between other galaxies are illustrated in the background.

Image Credit: NASA/JPL-Caltech
Astronomers have come across what appear to be two of the earliest and most primitive supermassive black holes known. The discovery, based largely on observations from NASA's Spitzer Space Telescope, will provide a better understanding of the roots of our universe, and how the very first black holes, galaxies and stars came to be.

'We have found what are likely first-generation quasars, born in a dust-free medium and at the earliest stages of evolution,' said Linhua Jiang of the University of Arizona, Tucson. Jiang is the lead author of a paper announcing the findings in the March 18 issue of Nature.

Black holes are beastly distortions of space and time. The most massive and active ones lurk at the cores of galaxies, and are usually surrounded by doughnut-shaped structures of dust and gas that feed and sustain the growing black holes. These hungry, supermassive black holes are called quasars.

As grimy and unkempt as our present-day universe is today, scientists believe the very early universe didn't have any dust -- which tells them that the most primitive quasars should also be dust-free. But nobody had seen such immaculate quasars -- until now. Spitzer has identified two -- the smallest on record -- about 13 billion light-years away from Earth. The quasars, called J0005-0006 and J0303-0019, were first unveiled in visible light using data from the Sloan Digital Sky Survey. That discovery team, which included Jiang, was led by Xiaohui Fan, a coauthor of the recent paper at the University of Arizona. NASA's Chandra X-ray Observatory had also observed X-rays from one of the objects. X-rays, ultraviolet and optical light stream out from quasars as the gas surrounding them is swallowed.

'Quasars emit an enormous amount of light, making them detectable literally at the edge of the observable universe,' said Fan.

When Jiang and his colleagues set out to observe J0005-0006 and J0303-0019 with Spitzer between 2006 and 2009, their targets didn't stand out much from the usual quasar bunch. Spitzer measured infrared light from the objects along with 19 others, all belonging to a class of the most distant quasars known. Each quasar is anchored by a supermassive black hole weighing more than 100 million suns.

Of the 21 quasars, J0005-0006 and J0303-0019 lacked characteristic signatures of hot dust, the Spitzer data showed. Spitzer's infrared sight makes the space telescope ideally suited to detect the warm glow of dust that has been heated by feeding black holes.

'We think these early black holes are forming around the time when the dust was first forming in the universe, less than one billion years after the Big Bang,' said Fan. 'The primordial universe did not contain any molecules that could coagulate to form dust. The elements necessary for this process were produced and pumped into the universe later by stars.'

The astronomers also observed that the amount of hot dust in a quasar goes up with the mass of its black hole. As a black hole grows, dust has more time to materialize around it. The black holes at the cores of J0005-0006 and J0303-0019 have the smallest measured masses known in the early universe, indicating they are particularly young, and at a stage when dust has not yet formed around them.

Other authors include W.N. Brandt of Pennsylvania State University, University Park; Chris L. Carilli of the National Radio Astronomy Observatory, Socorro, N.M.; Eiichi Egami of the University of Arizona; Dean C. Hines of the Space Science Institute, Boulder, Colo.; Jaron D. Kurk of the Max Planck Institute for Extraterrestrial Physics, Germany; Gordon T. Richards of Drexel University, Philadephia, Pa.; Yue Shen of the Harvard Smithsonian Center for Astrophysics, Cambridge, Mass.; Michael A. Strauss of Princeton, N.J.; Marianne Vestergaard of the University of Arizona and Niels Bohr Institute in Denmark; and Fabian Walter of the Max Planck Institute for Astronomy, Germany. Fan and Kurk were based in part at the Max Planck Institute for Astronomy when this research was conducted.

The Spitzer observations were made before the telescope ran out of its liquid coolant in May 2009, beginning its 'warm' mission.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology in Pasadena. Caltech manages JPL for NASA.

News Story Origin and Copyright: JPL/NASA
Click here for the original news release.

Click here for a printer-friendly version of this page.

Cool products from our online store:
Solar Print Kit

Solar Print Kit

On SALE today:
$19.99 $11.95 /each

4 Crystals Kit: Quartz, Amethyst, Emerald

4 Crystals Kit: Quartz, Amethyst, Emerald

On SALE today:
$29.95 $22.95 /each

Electromagnet Set

Electromagnet Set

On SALE today:
$39.99 $27.95 /each

Astro Aimer Green Laser Pointer

Astro Aimer Green Laser Pointer

On SALE today:
$149.99 $109.95 /each



Click here to get
a FREE ride with Uber!

Click here to
sign up for Birchbox

Science Quote

'My scientific work is motivated by an irresistible longing to understand the secrets of nature and by no other feelings.'

Albert Einstein
Science Sidebar | Science Education Articles
10 Ways to Keep Your Kids Interested In Science

Young children are natural scientists: they ask questions, pick up sticks and bugs outside, and are curious about the world around them. But as they get a bit older, many kids gradually lose their interest in science. They might see it as just another task at school, something that doesn't apply to their lives. Of course nothing could be further from the truth, so here are ten ways you can remind your kids that science is everywhere. Most of these are fun for adults, too! Continue reading ...

Top Selling

Here are our physics & astronomy bestsellers:
Deluxe Water Rocket Set
Magnetic Levitator - Classic
Scorpion, Ant, Wasp and Flower Bug
12 inch Galileo Thermometer
Revolving Multi-Color Fiberoptic Light
Solar Radiometer
Enviro Battery 4M Kit
Tin Can Robot 4M Kit
Wood Grain Newtons Cradle
Brush Robot 4M Kit


USC University of Southern California Dornsife College Physics and Astronomy Department McMaster University Physics and Astronomy Department