Battery-Powered Balancing Robot DIY STEM Kit
$9.99$4.95
Posted on: Nov 15, 2022
Since 2018, when the NASA InSight Mission deployed the SEIS seismometer on the surface of Mars, seismologists and geophysicists at ETH Zurich have been listening to the seismic pings of more than 1,300 marsquakes. Again and again, the researchers registered smaller and larger Mars quakes. A detailed analysis of the quakes’ location and spectral character brought a surprise. With epicentres originating in the vicinity of the Cerberus Fossae - a region consisting of a series of rifts or graben - these quakes tell a new story. A story that suggests vulcanism still plays an active role in shaping the Martian surface.
Mars shows signs of geological life
An international team of researchers, led by ETH Zurich, analysed a cluster of more than 20 recent marsquakes that originated in the Cerberus Fossae graben system. From the seismic data, scientists concluded that the low-frequency quakes indicate a potentially warm source that could be explained by present day molten lava, i.e., magma at that depth, and volcanic activity on Mars. Specifically, they found that the quakes are located mostly in the innermost part of Cerberus Fossae.
When they scanned observational orbital images of the same area, they noticed that the epicentres were located very close to a structure that has previously been described as a “young volcanic fissure.” Darker deposits of dust around this fissure are present not only in the dominant direction of the wind, but in all directions surrounding the Cerberus Fossae Mantling Unit. “The darker shade of the dust signifies geological evidence of more recent volcanic activity – perhaps within the past 50,000 years - relatively young, in geological terms,” explains Simon Stähler, the lead author of the paper, which has now been published in the journal Nature. Stähler is a Senior Scientist working in the Seismology and Geodynamics group led by Professor Domenico Giardini at the Institute of Geophysics, ETH Zurich.